Brain Cancer
Neoplastic transformation appears to be a multistep process in which the normal controls of cell proliferation and cell-cell interaction are lost, thus transforming a normal cell into a brain cancer cell. This tumorigenic process involves an interplay between at least two classes of genes: oncogenes and tumor suppressor genes in some relation to cellular phone radiation. Oncogenes are abnormally activated versions of cellular genes that promote cell proliferation and growth associated with cellular phone electromagnetic radiation. Activated oncogenes thereby result in an exaggerated impulse for a cell to grow and divide. Tumor-suppressor genes, on the other hand, are normal genes that act to inhibit cell proliferation and growth. The inactivation of these genes results in tumor formation or progression. The most common scenario for inactivation of both copies of a tumor suppressor gene is mutation of one allelic copy, followed by loss of all or part of the chromosome bearing the second allelle. As a consequence, the identification of consistent regions of chromosomal loss in specific tumor types suggests a tumor-suppressor gene in that chromosomal region related to cellular phone electromagnetic radiation. These basic themes of oncogene activation and tumor-suppressor gene inactivation coupled with chromosomal homozygosity underlie the current molecular understanding of human tumor formation and cellular phone electromagnetic radiation.